
COL7160 : Quantum Computing
Lecture 3: Measurement

Instructor: Rajendra Kumar Scribe: Samarth Gupta

1 Properties of Tensor Products
Before discussing measurement, we explicitly state and prove a fundamental property regarding the inner product
of tensor product states.

Lemma 1. Let {|ei⟩}mi=1 be the standard basis for Cm (where |ei⟩ has a 1 at the i-th position and 0 elsewhere) and
{|fj⟩}nj=1 be the standard basis for Cn. The set of tensor products B = {|ei⟩ ⊗ |fj⟩ : 1 ≤ i ≤ m, 1 ≤ j ≤ n} forms an
orthonormal basis for Cmn under the standard inner product.

Proof. By definition of the Kronecker product, the vector |ei⟩ ⊗ |fj⟩ is a vector of length mn that has exactly one
non-zero entry (equal to 1) at the index corresponding to the block i and offset j. Distinct pairs (i, j) ̸= (k, l) result
in vectors with 1s at strictly different positions. Therefore, the standard inner product (dot product) between any
two distinct basis vectors is 0:

⟨ei ⊗ fj |ek ⊗ fl⟩ = 0 if (i, j) ̸= (k, l)

If (i, j) = (k, l), the inner product is 1 × 1 = 1. Thus, ⟨ei ⊗ fj |ek ⊗ fl⟩ = δikδjl, proving orthonormality. Since
there aremn such vectors in anmn-dimensional space, they form a basis.

Proposition 2. Let |ψ0⟩ , |ψ2⟩ ∈ Cm and |ψ1⟩ , |ψ3⟩ ∈ Cn. The inner product of the tensor product states factorizes
into the product of individual inner products:

(⟨ψ0| ⊗ ⟨ψ1|) · (|ψ2⟩ ⊗ |ψ3⟩) = ⟨ψ0|ψ2⟩ · ⟨ψ1|ψ3⟩

Proof. We expand the arbitrary vectors in the standard bases defined in the Lemma:

|ψ0⟩ =
∑
i

ai |ei⟩ , |ψ2⟩ =
∑
k

bk |ek⟩

|ψ1⟩ =
∑
j

cj |fj⟩ , |ψ3⟩ =
∑
l

dl |fl⟩

The inner product on the combined space Cmn is linear. Substituting the expansions into the LHS:

LHS =

∑
i,j

a∗i c
∗
j (⟨ei| ⊗ ⟨fj |)

 ·

∑
k,l

bkdl(|ek⟩ ⊗ |fl⟩)


=
∑
i,j,k,l

a∗i c
∗
j bkdl ⟨ei ⊗ fj |ek ⊗ fl⟩

Using the result from the Lemma, ⟨ei ⊗ fj |ek ⊗ fl⟩ = δikδjl. This collapses the sum to indices where i = k and
j = l:

=
∑
i,j

a∗i c
∗
j bidj

=

(∑
i

a∗i bi

)
·

∑
j

c∗jdj


= ⟨ψ0|ψ2⟩ · ⟨ψ1|ψ3⟩
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2 Measurement
Measurement in quantum mechanics is a fundamental operation that differs significantly from classical observation.
It is a probabilistic and irreversible operation. To perform a measurement, we must specify an orthonormal basis
corresponding to the property we wish to observe.

2.1 Measurement in the Computational Basis
Consider a single qubit in the state |ψ⟩ = α |0⟩+β |1⟩. If we measure this qubit in the standard computational basis
{|0⟩ , |1⟩}:

• We observe the output 0 with probability |α|2. The state collapses to |0⟩.

• We observe the output 1 with probability |β|2. The state collapses to |1⟩.

This illustrates how randomness can emerge from a deterministic state.
Suppose we prepare a qubit in the superposition state |+⟩ = 1√

2
(|0⟩+ |1⟩). If we measure this state in the compu-

tational basis {|0⟩ , |1⟩}:

• Probability of 0: | 1√
2
|2 = 1

2 .

• Probability of 1: | 1√
2
|2 = 1

2 .

Even though the state |+⟩ was prepared deterministically, the measurement outcome is random.

2.2 Measurement in a General Basis
We are not restricted to the computational basis. We can measure a qubit in any orthonormal basisB = {|b0⟩ , |b1⟩}
of C2. To find the probabilities, we express the state |ψ⟩ as a linear combination of the basis vectors:

|ψ⟩ = α′ |b0⟩+ β′ |b1⟩

where α′ = ⟨b0|ψ⟩ and β′ = ⟨b1|ψ⟩.
The measurement rules are:

• The system collapses to |b0⟩ with probability |α′|2 = | ⟨b0|ψ⟩ |2.

• The system collapses to |b1⟩ with probability |β′|2 = | ⟨b1|ψ⟩ |2.

3 Global Phase and Distinguishability
A common question arises regarding the physical significance of the phase of a quantum state. Specifically, can we
distinguish between a state |ψ⟩ and the state eiθ |ψ⟩ (where θ ∈ [0, 2π]) using measurement?
To answer this, consider an arbitrary quantum system (not necessarily a single qubit) described by a state vector |ψ⟩
in a Hilbert spaceH. Let us perform a measurement in an arbitrary orthonormal basis {|bk⟩}k .
The probability of obtaining the outcome corresponding to the basis vector |bk⟩ given the state |ψ⟩ is:

P (k) = | ⟨bk|ψ⟩ |2

Now, consider the state with a global phase, |ψ′⟩ = eiθ |ψ⟩. If we perform the same measurement on this state, the
probability of obtaining the outcome k is:

P ′(k) = | ⟨bk|ψ′⟩ |2 = | ⟨bk|eiθψ⟩ |2

Using the linearity of the inner product in the second argument (or simply factoring out the scalar), we have:

⟨bk|eiθψ⟩ = eiθ ⟨bk|ψ⟩
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Taking the squared modulus:
P ′(k) = |eiθ ⟨bk|ψ⟩ |2 = |eiθ|2| ⟨bk|ψ⟩ |2

Since |eiθ| = 1 for any real θ, we arrive at:

P ′(k) = 1 · | ⟨bk|ψ⟩ |2 = P (k)

Since the measurement probabilities for all possible outcomes in any basis are identical for |ψ⟩ and eiθ |ψ⟩, there is
no physical measurement that can distinguish between them.

Theorem 3. The states |ψ⟩ and eiθ |ψ⟩ are physically indistinguishable. The factor eiθ is called a global phase and
has no observable consequences.

Remark 4. Note that relative phase does matter. For example, 1√
2
(|0⟩ + |1⟩) and 1√

2
(|0⟩ − |1⟩) are distinguishable

(e.g., by measuring in the Hadamard basis).

3.1 Distinguishing Non-Orthogonal States
If we are given an unknown state |ψ⟩ promised to be from the set {|φ1⟩ , |φ2⟩}, can we identify which one it is?

• If ⟨φ1|φ2⟩ = 0 (orthogonal), we can distinguish them perfectly by measuring in a basis containing |φ1⟩ and
|φ2⟩.

Exercise: Suppose the states are not orthogonal, i.e., ⟨φ1|φ2⟩ ̸= 0. Find the maximum probability with which these
two states can be distinguished using an optimal measurement.

4 Interaction-Free Measurement: The Bomb Test
This thought experiment, known as the Elitzur–Vaidman bomb tester, demonstrates the power of quantummeasure-
ment to detect the presence of an object without interacting with it (i.e., without a photon hitting it).

4.1 The Setup
Consider a Mach-Zehnder interferometer with two paths, labeled |0⟩ and |1⟩. A bomb is placed on the path corre-
sponding to the state |1⟩. The bomb has two possible states:

1. Working (Live): The bomb is light-sensitive. If a photon hits it (path |1⟩), it explodes. In quantummechanical
terms, a live bomb acts as ameasurement device in the computational basis {|0⟩ , |1⟩}.

2. Not Working (Dud): The bomb is broken (transparent). The photon passes through without any interaction.
This acts as the identity operator I.

Our goal is to determine if the bomb is working without detonating it.

4.2 The Protocol
The experiment proceeds in two distinct measurement stages:

1. Input: We inject a photon. While we could use a general state |ψ⟩, for simplicity we prepare the equal
superposition state:

|ψin⟩ = |+⟩ = |0⟩+ |1⟩√
2

2. Stage 1 (The Bomb): The photon passes the bomb.

• If the bomb is Live, it measures the photon’s position in the basis {|0⟩ , |1⟩}.
• If the bomb is a Dud, no measurement occurs.

3. Stage 2 (Output Readout): We detect the photon at the output using a measurement device. We can choose
the basis for this final measurement.
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4.3 Scenario 1: Measuring Output in Computational Basis {|0⟩ , |1⟩}
First, let us try measuring the final output in the standard {|0⟩ , |1⟩} basis.

Case A: Bomb is Dud The bomb does nothing. The state remains |ψ⟩ = |+⟩. When we measure |+⟩ in {|0⟩ , |1⟩},
we get:

• Outcome |0⟩ with probability | ⟨0|+⟩ |2 = 1/2.

• Outcome |1⟩ with probability | ⟨1|+⟩ |2 = 1/2.

Case B: Bomb is Live The bomb performs the first measurement on |+⟩ = |0⟩+|1⟩√
2

.

• Explosion: With prob 1/2, the photon is found on path |1⟩. The bomb explodes.

• Survival: With prob 1/2, the photon is found on path |0⟩. The state collapses to |0⟩.

If it survives (state is now |0⟩), we perform the final measurement in {|0⟩ , |1⟩}:

• Outcome |0⟩: Probability 1 (since state is |0⟩).

• Outcome |1⟩: Probability 0.

Conclusion for Scenario 1:

• If we see |1⟩, the bomb must be a Dud.

• If we see |0⟩, it could be a Dud (prob 1/2) or a Live bomb that didn’t explode (prob 1/2). This gives us no
interaction-free detection of a live bomb.

4.4 Scenario 2: Measuring Output in Hadamard Basis {|+⟩ , |−⟩}
Now, we change the output detector to measure in the basis {|+⟩ , |−⟩}. This is where the quantum advantage
appears.

Case A: Bomb is Dud The bomb does nothing. The state remains |ψ⟩ = |+⟩. We measure |+⟩ in the basis
{|+⟩ , |−⟩}:

• Outcome |+⟩: Probability | ⟨+|+⟩ |2 = 1.

• Outcome |−⟩: Probability | ⟨−|+⟩ |2 = 0.

Ideally, interference is perfect, and we never see |−⟩.

Case B: Bomb is Live Stage 1 (The Bomb) occurs first:

• Explosion: With prob 1/2. (Path |1⟩ detected).

• Survival (Collapse): With prob 1/2. The photon is forced to path |0⟩. The state collapses to |0⟩.

Now, we perform the Stage 2 measurement on the surviving state |0⟩. Recall that |0⟩ = 1√
2
(|+⟩+ |−⟩).

• Outcome |+⟩: Probability | ⟨+|0⟩ |2 = 1/2.

• Outcome |−⟩: Probability | ⟨−|0⟩ |2 = 1/2.

Total Probabilities for Live Bomb: Combining the probability of survival (1/2) with themeasurement outcomes:

• Bomb Explodes: 1/2.

• Outcome |+⟩: 1
2 × 1

2 = 1/4.

• Outcome |−⟩: 1
2 × 1

2 = 1/4.
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4.5 Conclusion: Interaction-Free Detection
Comparing the two cases in Scenario 2, we observe a unique signature:

• If the bomb is a Dud, outcome |−⟩ is impossible (Prob 0).

• If the bomb is Live, outcome |−⟩ occurs with probability 1/4.

Thus, if we observe the outcome |−⟩, we know with certainty that **the bomb is live**, even though the bomb did
not explode. The photon must have taken path |0⟩ (avoiding the bomb), yet the potential for measurement on path
|1⟩ destroyed the interference, making the outcome |−⟩ possible. We have successfully detected the bomb with a
probability of 0.25 without interacting with it.
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